딥러닝 기반 전류 분석을 통한 프린터 정착기 고장 진단
본문
- Conference
- 대한기계학회 2025년 학술대회
- Date
- 2025-12-12
- Presentation Type
- 구두
Abstract
The fuser belt, a critical component in a laser printer's fuser assembly, frequently fails prematurely due to constant exposure to high heat and pressure. To address this, our study proposes a robust fault detection framework utilizing the motor's current signal. This method first employs ensemble empirical mode decomposition (EEMD) to isolate significant low-frequency features by filtering out irrelevant high-frequency noise. Subsequently, a convolutional autoencoder (CAE) reconstructs this filtered signal to identify deviations from normal operation. The framework's superior performance was validated through experiments designed to reflect real-world printing conditions.
- 이전글탄성파 제어를 위한 딥러닝 기반 역설계 모델 개발 26.01.07
- 다음글CAN 데이터 기반 가상 센서를 활용한 전기차 실시간 중량 추정 기법 26.01.07
